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Fundamental human traits, such as language and bipedalism, are
associated with a range of anatomical adaptations in craniofacial
shaping and skeletal remodeling. However, it is unclear how such
morphological features arose during hominin evolution. FOXP2 is
a brain-expressed transcription factor implicated in a rare disorder
involving speech apraxia and language impairments. Analysis of
its evolutionary history suggests that this gene may have contrib-
uted to the emergence of proficient spoken language. In the
present study, through analyses of skeleton-specific knockout
mice, we identified roles of Foxp2 in skull shaping and bone
remodeling. Selective ablation of Foxp2 in cartilage disrupted
pup vocalizations in a similar way to that of global Foxp2 mutants,
which may be due to pleiotropic effects on craniofacial morpho-
genesis. Our findings also indicate that Foxp2 helps to regulate
strength and length of hind limbs and maintenance of joint carti-
lage and intervertebral discs, which are all anatomical features
that are susceptible to adaptations for bipedal locomotion. In light
of the known roles of Foxp2 in brain circuits that are important for
motor skills and spoken language, we suggest that this gene may
have been well placed to contribute to coevolution of neural and
anatomical adaptations related to speech and bipedal locomotion.
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Spoken language and bipedalism are two behavioral traits that
distinguish humans from other living apes, each with a
complex evolutionary history. The emergence of such derived
traits was accompanied by various changes in skeletal anatomy.
For example, as well as long-term increases in overall cranial
capacity over the course of primate evolution, more recent al-
terations in skull shape occurred in our ancestors, changes that
some hypothesize as important for language evolution (1, 2).
Advances in genomics are uncovering genes of relevance for
distinct human traits like language (3). In particular, disruptions
of the FOXP2 transcription factor are implicated in a monogenic
disorder involving childhood apraxia of speech (CAS) and ex-
pressive—receptive language impairments (4-7). The first etio-
logical FOXP2 mutation was identified in a family (KE) in which
all affected members carried an R553H substitution within the
Forkhead-box DNA-binding domain. In addition, mutations
of FOXPI, the closest paralogue of FOXP2, cause a neuro-
developmental syndrome including speech and language im-
pairments (8-11), partially overlapping with deficits associated
with FOXP2 variants in multiple different cases (12-14). The
functions of Foxp2 in vocal behaviors have been assessed
through analysis of ultrasonic vocalizations (USVs) in mouse
models (15-20), or learned song in songbirds (21-23). Foxp2 is
highly conserved across species, but underwent positive selection
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on the lineage that led to modern humans (24, 25). Two amino
acid substitutions occurred in human FOXP2 after splitting from
our common ancestor with the chimpanzee. Investigations of
these substitutions in partially humanized mice suggest they af-
fect connectivity and plasticity of cortico-basal ganglia circuits,
impacting learning mechanisms (26, 27).

Morphological correlation or covariation, a concept going as
far back as Darwin’s On the Origin of Species, is an essential
driving force for evolution. The emergence of human speech
involved not only neural changes, but also modifications in an-
atomical features of the vocal tract, including configuration of
superficial vocal folds, trachea, and oral cavities. For instance,
the importance of a relatively descended larynx for human
speech has been a topic of much discussion (28). While multiple
studies of Foxp2 have focused on neuronal functions, none have
tested its potential contributions to vocal anatomical geometry. Of
note, a comparison of transcriptional regulation by human and
chimpanzee versions of FOXP2 reported enrichment of differential
targets involved in craniofacial formation and cartilage development
(29). Moreover, in a previous study, we demonstrated cooperative
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functions of Foxp1/2 in regulating endochondral ossification during
embryonic bone development (30).

Building on our demonstration of a Foxp2 role in embryonic
bone development, and in light of prior hypothesized involve-
ment of this gene in human evolution, we here used skeleton-
specific loss-of-function analyses in mice to investigate how it
might help regulate anatomy. Unexpectedly, skeletal Foxp2 loss
led to disruption of pup vocalizations, similar to phenotypes
previously reported for global mutant or knockout lines (17, 31).
Most interestingly, loss of Foxp2 in skeletal tissue also led to
pleiotropic deficits in skull shaping and bone strengthening. Our
findings reveal regulatory roles of Foxp2 in helping build ana-
tomic substrates that are important for vocal behaviors, and
suggest that it might also be considered a candidate for skeletal
adaptations relevant to bipedal locomotion.

Results

Cartilage-Specific Deletion of Foxp2 Impairs Cranial Base Development.
Cranial base morphogenesis is a major determinant of skull
shaping (32). Basicranial skeletons, such as the sphenoid and
basioccipital bones (Bos), are primarily formed through endo-
chondral ossification. To test roles of Foxp2 in cranial base de-
velopment, we firstly examined its expression in the synchondrosis
joint—the unique growth plate sustaining endochondral ossifica-
tion in sphenoid bones. We detected expression of Foxp2 protein,
as well as its paralogue Foxpl, in mesenchymal progenitor cells in
resting zone and/or perichondrium (white arrows in Fig. 14). We
then generated chondrocyte-specific Foxp2 conditional knockout
(cKO) mice by crossing a homozygous floxed line Foxp2™" with
Col2-Cre, which targeted cartilage in appendicular skeletons and
partial craniofacial mesenchyme. We observed that craniofacial
elements were consistently shortened in homozygous Foxp2¢,*'*
cKO mice compared with controls at postnatal day 10 (P10) and
P30 stages (double-headed arrows in Fig. 1B). The skulls of
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Fig. 1. Deletion of Foxp2 in cartilage impairs craniofacial shaping. (A) IHC ex-
aminations detected the expression of Foxp1 and Foxp2 in different subsets of
chondrocytes in intersphenoidal synchondrosis of sphenoid bones at P7. PC,
proliferating chondrocytes; RC, resting chondrocytes. (Scale bar, 100 pm.) (B) Top
view of heads of Foxp2™ (Contr) and Foxp2c,*’* (Col2-cKO) mice at P10 and
P30. (C) Top view of skull visualized by Alcian blue/Alizarin red staining at E15.5
and P13. (D and E) Top view of cranial bases of Foxp2ct,,2“A mice (D) at P13, and
Foxp2f®>2H* (R552H/+) mutant (E) at P7. (F and G) Enlarged view of presphenoid
in D and E. Double arrow indicated the funnel position of presphenoid. (H) Al-
tered morphology of presphenoid (arrow) in Foxp2f®>2HR552H (R552H/R552H)
mutant mice at PO. (Lower) Magnified presphenoid. Bs, basisphenoid; bo,
basioccipital; ps, presphenoid.
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Foxp2c,i*' mice were smaller in size than Foxp2™ littermates at
embryonic stage 15.5 days (E15.5) and P13 (Fig. 1C). Endo-
chondral ossification of the Bo, the basisphenoid bone (Bs) and
the nasal bone, were attenuated in Foxp2c,,,*’* mice at E15.5, as
evidenced by diminished Alizarin red staining (arrows in Fig. 1C).
In particular, broader funnel-shaped presphenoids were observed
in FOXPZCOIZA/A mice at P13 (arrows in Fig. 1 D and F). Minor
alterations in presphenoid morphology were also detected at P7 in
Foxp2™?"* mutant mice, which carry a point mutation matching
that found in affected members of the KE family (Fig. 1 E and G
and SI Appendix, Fig. S14). Altered presphenoid morphology was
much more evident in homozygous Foxp2R2HR52H mice at PO
(arrows in Fig. 1H and SI Appendix, Fig. S1B). At the histological
level, Foxp2,;;*'® mice showed delayed chondrocyte hypertrophy
and ossification within sphenooccipital synchondroses, as revealed
by Safranin O staining and immunohistochemistry (IHC) and
immunofluorescence (IF) examination using Col X, Osterix (Osx),
and Foxp2 antibodies (SI Appendix, Figs. S1C and S24). Collec-
tively, these data indicate that Foxp2 is important for sphenoid
development and cranial shaping.

Foxp1/2 redundantly regulate endochondral ossification dur-
ing embryonic development (30). Therefore, we also examined
the impact of Foxpl on craniofacial development by generatin,
cartilage-specific knockout mice. As observed in FopoCOle/
mice, homozygous Foxp1 ¢,;™* mice had shorter nasal bones (ST
Appendix, Fig. S2 B and C) and minor morphological deformities
in their presphenoid bone (arrows in SI Appendix, Fig. S2 D and
E), with similarities to features observed in cases of heterozygous
human FOXPI disruption (10, 11). Then, we compared cranio-
facial shaping within the sin§le (Foxpl con™® and Foxp2co™'™)
and the double (Foxp! Reor™ ) cKO mice at E18.5. Shortening of
nasal bones and vaulted skulls were evident in the Foxpl/2¢,,~"*
double mutant compared with controls (SI Appendix, Fig. S2F,
Upper). Defective sphenoid formation was more pronounced
in Foxpl 2cor™” double mutants than either single mutant or
Foxpl/2"" controls (yellow arrows in SI Appendix, Fig. S2F,
Lower). The additive effect of double Foxpl/2 deficiency on
skull shaping was also observed in heterozygous knockout mice
(F OWIﬂ/+F QXPZﬂ "+ F oxpl CalZA/+F0)q72C012A/+a Foxpl co™'F oxp2 cor™",
and Foxpl cop™" AFopoC,,,ZA/J’) at P10 (SI Appendix, Fig. S2G).
These results indicate that Foxp2 and Foxpl regulate craniofacial
development cooperatively.

Ablation of Foxp2 in Cartilage Disrupts Pup USVs. Morphogenesis
and elasticity of the larynx and vocal tract are rudimentary for
animal sound production (33). In our observations, complete loss
of Foxp2 in FopoCoIZA/A cartilage tissue resulted in a minor
perturbation of the morphogenesis of laryngeal thyroid and
trachea cricoid cartilage, revealed by reduced Alcian blue
staining in cricoid and trachea cartilage at P13 (Fig. 24) and
ectopic ventral expansion of the esophagus below the glottis
(arrows in Fig. 2B). Subtle decreases in size of laryngeal cartilage
were also observed in Foxp2™ 2R or Foxp2R32H+ mutant mice, at
PO and P7, respectively, as indicated by brackets in Fig. 2C and S/
Appendix, Fig. S3. Meanwhile, development of trachea cartilage was
relatively attenuated in homozygous Foxp2>2R352H mytant mice,
as evidenced by Alcian blue staining (black arrows in Fig. 2 C and D
and SI Appendix, Fig. S3).

We next examined the consequences of homozygous cartilage-
specific Foxp2 loss for mouse pup vocalizations. Foxp2¢,,™"* cKO
mice at P10 were subjected to sound recording and spectrogram
analyses. According to our bioacoustic analysis, Foxp2c,,>
pup calls were significantly perturbed compared with that of con-
trols (Fig. 2E). Of note, approximately one-third of the Foxp2¢,,™
pups presented no detectable calls. For the other two-thirds of
Foxp2¢,;™'® mice, the call rate (Zs; = 5.392, P < 0.01) and the
proportion of complex syllables, #(34) = —3.237, P < 0.01, were
both significantly reduced in Foxp2¢,,*'* pups compared with
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Fig. 2. Ablation of Foxp2 in cartilage impairs USVs in pup calls. (A) Alcian blue
staining of larynx cartilages from Foxp2c.;*"* (Col2-cKO) mice. CC, cricoid
cartilage; TC, thyroid cartilage; Tr, trachea cartilage. (B) Safranin O staining for
the transverse sections of larynx at P10. (Scale bar, 500 pm.) E, esophagus; G,
glottis. (C and D) Alcian blue staining of larynx cartilages from Foxp2R>32HR552H
(R552H/R552H, C) at PO and Foxp2®**?""* (R552H/+, D) mutant mice at P7. (E)
Representative spectrograms of pup isolation calls in FopoC(,,zA/A (Col2-cKO)
mice at P10. The y axis indicates the frequency change of the USVs in the ki-
lohertz range, whereas the x axis indicates time in seconds. Color depths in the
sonograms represent relative intensity strength in decibels. C, complex syllable;
S, simple syllable. (F) The sonic characteristics of pup calls, including syllable
rate, proportion of complex syllables, syllable duration, peak frequency, wie-
ner entropy, and bandwidth in Foxp2™" (Contr) mice. *P < 0.05; **P < 0.01;
**%p < 0.001. Foxp2™ mice, n = 27; Foxp2co2™® knockouts, n = 26.

wild-type controls (Fig. 2E). Pup calls were also significantly
shorter in duration, #(42) = —3.691, P < 0.01, broader in band-
width, #(42) = 2.093, P < 0.05, and higher in entropy, #(42) =
5.099, P < 0.01, than those of controls (Fig. 2F). No significant
differences were observed in the USVs of male and female cKO
mice. Similar vocalization defects were observed in Foxpl o™
mice at P10 (SI Appendix, Fig. S4 A and B). Together these
observations suggest that Foxp?2 is involved in regulating multiple
aspects of vocal tract configuration, including morphological
features of the trachea and larynx that are important for vocal
production.

Foxp2 Loss Perturbs Skull Integrity. The interparietal bone is the
boundary component between the parietal and occipital bones,
which is considered to be a “hot spot” that is susceptible to
cranial remodeling (34). Parietal and interparietal bones are
formed in a process of intramembranous ossification. Foxp2
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expression was detected in Osterix* skeletal progenitor cells in
developing interparietal bones, as indicated by IHC examination
of sections of skull from Osx-GFP:Cre embryos at E15.5 (arrow
in SI Appendix, Fig. S54). To investigate the contributions of
Foxp?2 to skull vault development we generated cKO mice with
Fopo deletion strictly in mesenchymal progenitor cells by
crossmg Foxp2™" animals to a PrxI-Cre line. The Foxp2p,~*
cKO mice were grossly indistinguishable from their wild-type
littermates (SI Appendix, Fig. S5B), with significant deletion of
Foxp2 in mesenchymal stem cells (MSCs) from bone marrow (S
Appendix, Fig. S5 C and D). Loss of Foxp2 from mesenchymal
progenitors perturbed osteogenesis of interparietal bones (Fig.
3A4), as evidenced by diminished Osx* osteoblasts at the suture
(81 Appendix, Fig. SS5E), and decreased expression of osteogenic
genes (Osx, Runx2, Collal, and Alp) in mesenchymal progenitor
cells (ST Appendix, Flg SSF) Effects on lambdoid suture fusion
were also observed in Foxp2R2H/RS32H op Foxp2R532H+ perinatal
mutant mice (Fig. 3 B and C and SI Appendix, Fig. S6). Atten-
uation in lambdoid suture closure was much more penetrant in
Foxpl/2p,;*'* double knockout mice (Fig. 3D). Our findings
suggest that Foxp2 helps to regulate posterior skull integrity,
including interparietal bone development and lambdoid suture
closure, by promoting osteogenic differentiation of MSCs.

Ablation of Foxp2 Impairs Leg Gracility and Cartilage Maintenance.
For appendicular long bones, postnatal elongation occurs at and
depends on the growth plates, which progressively narrow down and
ultlmately dlsappear with age. Compared with control littermates,
FopoP,,d A femur bones were shortened in both males and females
at 2 mo of age (Fig. 4 4 and B). In cultures of MSCs prepared from
wild-type bone marrow, Foxp2 showed overlapping expression with
Nestin (SI Appendix, Fi§. S74). Chondrogenic differentiation of
MSCs from Foxp2p,;*'® mutants was impaired compared with
controls, as evaluated by Alcian blue staining and qPCR of chon-
drogenic markers (SI Appendix, Fig. S7 B and C). Consistent with
this observation, growth plates in Foxp2p,;~’* femurs were nar-
rower at 6 mo and manifested obvious signs of cessation/disruption
at 12 mo (Fig. 4C). Thus, it appears that loss of Foxp2 from mes-
enchymal progenitors leads to precocious arrest in the growth plate,
partially accounting for the shortening of lower limbs. Given that
our previous study showed that Foxp2 sustains chondrocyte pro-
liferation and protects from apoptosis in embryonic growth plates
(30), the effect of Foxp2 on chondrogenesis may underlie the de-
fective maintenance of the postnatal growth plate.

As a consequence of bipedal locomotion, the articular cartilage in
humans endures much more pressure than in other primates.
Histological analyses of Safranin O-stained sections revealed
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Fig. 3. Disruption of posterior skull integrity in Foxp2 knockout mice. (A)
Dorsal view of skulls of Foxp2p.,;*"* mice (Prx1-cKO) at E18.5. Ip, interpar-
ietal bone. (B and C) Dorsal view of skulls of Foxp2R°52H/R552H (R552H/R552H)
mutant mice at PO and Foxp2®*>2""* mice (R552H/+) at P7. (D) Dorsal view of
skulls of Foxp1/2", Foxp2p,;*'® (Prx1-cKO), and Foxp1/2pnq*" [Prx1-cKO
(P1/2)] mice at 1 mo of age. Dashed lines outline the lambdoid suture.

PNAS | August 28,2018 | vol. 115 | no.35 | 8801

DEVELOPMENTAL
BIOLOGY


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721820115/-/DCSupplemental

L T

/

1\

BN AS PN AN D

[ Contr
» M Pri.cKO

gpntr Pnc 1 -cK o

a
@
*

0.0-
‘{\,&\e
<@

Femur
Length(cm)

b Foy

L <

N
D Contr P_rx 1-cKO F

Contr

Contr Prx1-cKO
¢ B g Wi g

Col2-cKO

Knee Jomt+ DMM

Fig. 4. Impaired articular cartilage integrity due to Foxp2 loss. (A) Repre-
sentative pictures of femur bones from Fopof”ﬂ (Contr) and Foxp2p.;~*
(Prx1-cKO) mice at 2 mo old. (B) Quantification of the length of femur bones
in A. n =5; *P < 0.05. (C) Safranin O staining for growth plate in tibia bones
from mice at 6 mo (Upper) and 12 mo (Lower) of age. (Scale bar, 500 um.) (D)
Representative pictures of articular cartilages from Foxp2p.;*™* (Prx1-cKO)
mice at 6 mo of age. (E) Representative photographs of articular cartilages
at knee joints from FOxXp2ppi™™ (Prx1-cKO) 2-mo-old mice following 6-wk
recovery from DMM surgery. (Scale bar, 100 pm.) (F) Representative pictures
of intervertebral discs (IVDs) in lumbar vertebrates from Fopo.;c,,ZA’A (Col2-
cKO) mice at 2 mo of age.

that Foxp2p,.;*’* cKO animals manifested osteoarthritis (OA)-

like pathology in their knee joints from the age of 6 mo, as well as
reduction of superficial zones and proteoglycan content in distal
femurs (Fig. 4D). Signs of OA in mutant knee joints were exac-
erbated by destabilization of the medial meniscus (DMM) at 2 mo
of age (Fig. 4E). Interestingly, precocious signs of intervertebral
disc (IV 2 degeneration could be detected in the lumbar IVD of
FOXPZCOIZ mutant at 2 mo of age, as evidenced by decreased
Safranin O staining in annulus fibrosus (Fig. 4F).

Strong and less massive legs have been suggested to represent
evolutionary adaptations to improve walking economy (35). A
key indicator for bone strength is stiffness, a parameter reflecting
the deformation of bone under stress. We assessed the effects
of Foxp2 loss on bone strength at 2 mo of age by employing
the three-point bending approach. Accordlng to the load-
deformation curves, femurs from FopoPmrA knockouts had
higher maximum load and yield load, but lower stiffness than
wild-type littermates (SI Appendix, Fig. S7D). This finding sug-
gests that Foxp2 loss weakens long bone strength by impairing its
bone material properties. Taken together, the data indicate that
Foxp2 helps maintain articular cartilage and IVD integrity, fac-
tors that are important for forging gracile but strong legs.

Foxp2 Regulates Bone Remodeling. To dissect the cellular basis of
Foxp2 function in leg strengthening, we investigated its role in
bone remodeling, including osteoblast-mediated bone formation
and osteoclast-dependent bone resorption. In FopoPMA/ A mu-
tant mice, pCT analyses revealed that trabecular bone volume,
bone mineral density, thickness, and numbers were increased at
2 mo of age (Fig. 54 and SI Appendix, Fig. STE). H&E staining of
mutant femur sections displayed increased trabecular bone
masses (SI Appendix, Fig. STF). In addition, bone formation rate
was still relatively reduced in FopoJKD,ﬂA knockout mice, as
quantified by dual calcein labeling (ST Appendix, Fig. S7 G and H).
Consistent with that result, the osteogenic potency of Foxp2-
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deficient MSCs was impaired, indicated by a reduction in ALP
and Alizarin red staining (Fig. 5B), as well as altered ex-
pression levels of osteoblast markers (Alp, Collal, Runx2, and
Osterix; SI Appendix, Fig. S84) during osteogenic induction. The
above observations suggest that Foxp2 sustains MSC osteogenic
differentiation.

Postnatal bone homeostasis is also affected by osteoclast-
mediated bone resorption. We generated osteoclast-specific
Foxp2 cKO mice by crossing Foxp2™ with a Cisk-Cre line.
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Fig. 5. Foxp2 controls bone remodeling in cooperation with Foxp1. (A)
Representative images of 3D reconstruction of uCT analysis of Foxp2pmi ™™
(Prx1-cKO) femur bones. (Upper) Cortical bone. (Lower) Trabecular bone. (B)
ALP and Alizarin red staining following 14 d of osteogenic induction of MSCs
from Foxp2p.;*® (Prx1-cKO) mice at 2 mo of age. (C) Representative images
of 3D reconstruction of pCT analysis of Foxp2ce ™™ (Ctsk-cKO) femur bones
at 2 mo of age. (Upper) Trabecular bone. (Lower) Cortical bone. (D) TRAP
staining of osteoclastogenic cultures of bone marrow from Foxp2ce ™™
(Ctsk-cKO) mice at 2 mo of age. (Scale bar, 250 um.) (E) Western blotting
detection of the expression of Notch-related proteins (Delta4, Jagged2, and
Hey1) in MSCs from Foxp2p*'® (Prx1-cKO) mice. (F) qPCR assessment for
expression of Notch-related marker genes (Delta4, Jagged2, Hey1, and Heyl)
in bone marrow MSCs from FopopmA/A (Prx1-cKO) mice at 2 mo of age. n = 3.
(G and H) Co-IP detected the in vivo interaction of Foxp1, Foxp2, and RBPjk
proteins in bone marrow MSCs, or in 293T cells transfected with the indicated
plasmids. (/) Luciferase assay in 293T cells transfected with the indicated plasmids.
Foxp2 repressed the transactivation of RBPjk-Luc (containing RBPjk DNA-binding
sites in promoter region) by NICD2, whereas a Foxp2 missense mutation (R552H)
alleviated the repressive function. n = 3. *P < 0.05; **P < 0.01; ***P < 0.001; ns,
not significant. (J) Diagrammatic summaries of the pleiotropic roles of Foxp2 in
helping to regulate anatomical features involved in vocalization and bone
strengthening. Foxp2 regulates skull shaping, vocalization, and bone remodeling
by forming complexes with Foxp1 and RBPjk proteins.
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FopoCtSkA/ 2 mice showed increased bone mass in both cortical
and trabecular bones at 2 mo of age (Fig. 5C and SI Appendix,
Fig. S8C). Osteoclast differentiation was impaired in Foxp2 ¢,y
bone marrow, as determined by tartrate-resistant acid phospha-
tase (TRAP) staining in osteoclastogenic cultures derived from
mononuclear cells in bone marrow (Fig. 5D). This was coupled
with down-regulation of prototypic osteoclastic genes (c-Fos, Nfat2,
Ctsk, Trap, and Rankl) (SI Appendix, Fig. S8B). These findings
suggest that Foxp2 promotes osteoclastogenesis in both a cell au-
tonomous and nonautonomous manner. Collectively, our data show
that Foxp2 helps to build strong bones by promoting bone remod-
eling with dual effect on bone formation and resorption.

Foxp2 Controls Bone Formation in Cooperation with Foxp1. As noted
above, compound knockouts of Foxpl and Foxp2 presented
mostly additive defects in endochondral or intramembranous
ossification (Fig. 3D and SI Appendix, Fig. S2). Our previous study
demonstrated that Foxpl promotes MSC osteogenic differentiation
by repressing Notch signaling (36). Foxp2p,.,*® MSCs exhibited el-
evated expression of several Notch signaling members (e.g., Delta4,
Jag2, Jagl, Heyl, and HeyL; Fig. 5 E and F). In terms of defective
MSC osteogenic differentiation, Foxpl/2p,;** double knockout
mice were more penetrant compared with either the Foxpl or Foxp2
single knockouts (SI Appendix, Fig. S9). We further observed that
Foxp2 interacted at the protein level with Foxp1 and RBPjk in bone
marrow MSCs, as judged by in vitro and in vivo coimmunopreci-
pitation (Co-IP) assays (Fig. 5 G and H). While Foxp2 repressed the
activation of Rbpjk-Luc via the intracellular domain of Notch
(NICD2), a Foxp2 (R552H) version with a mutated DNA-binding
domain relieved the repression (Fig. 5I). These findings suggest that
Foxp2, in cooperation with Foxpl, promotes osteogenic differenti-
ation of MSCs partially through repression of Notch signaling.

Discussion

To date, the majority of investigations into the genetic bases of
vocal communication and language functions have focused on
neural pathways (37). Here we used conditional knockouts in
mice to extend the examination of Foxp2 function to skull
shaping and long bone development. As shown in the model of
Fig. 5J, our work suggests that Foxp2 exerts pleiotropic influ-
ences on skeletal development by helping to regulate: (i) skull
shaping, including cranial base formation and interparietal bone
development; (ii) vocal tract geometry, including the sphenoid
bone and laryngeal cartilage, anatomical substrates that are im-
portant for speech; and (iii) development of gracile and strong
hind limbs, and maintenance of cartilage integrity in knee joint
and IVD. In sum, Foxp2 influences multiple skeletal features
conferring susceptibility to anatomical variances in vocal pro-
duction and, we speculate, maybe also bipedal locomotion.

In line with the speech and language disorders observed in
people with heterozygous FOXP2 mutations (i.e., with hap-
loinsufficiency of the gene), prior studies of humans and animals
have given substantial evidence that the gene is important for
development and function of relevant brain circuits (38, 39). For
example, neural investigations of mice with mutated Foxp2 have
identified significant effects on neurite outgrowth and synaptic
plasticity of the corticostriatal and corticocerebellar circuits
where it is typically expressed (40-42). The core behavioral
phenotype associated with heterozygous disruptions of human
FOXP?2 is still a matter of debate (39). The most obvious di-
agnostic feature is CAS, involving problems with the neural
control of sequences of orofacial movements (6), and expressive
skills are more profound than problems with receptive language
and/or grammar. Recent work also points to cognitive deficits in
phonological working memory in FOXP2 mutation carriers in the
KE family (43). Craniofacial and/or skeletal abnormalities have
seldom been documented for human heterozygous FOXP2 mu-
tation cases. Interestingly, studies of people with FOXP2 variants
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have anecdotally reported difficulties in infant feeding and
coughing in a few cases (12, 13, 44, 45), which could feasibly
relate to larynx cartilage changes. In the present study, cartilage-
specific ablation of Foxp2 in mouse pups disrupted the production
of innate USVs, despite normal neural expression in key brain
structures (SI Appendix, Fig. S10). The primary findings stem from
homozygous skeleton-specific deletions of Foxp2. Thus, besides its
important actions in the central nervous system and in vocal pro-
duction learning (46), Foxp2 also helps to establish anatomical
substrates important for vocal communication. On the other hand,
our investigations also revealed that Foxp2® > homozygous mu-
tant mice showed alterations in presphenoid and larynx cartilage,
although heterozygous mutants displayed only minor changes (S
Appendix, Figs. S1 and S3). The potential existence of subtle ana-
tomical anomalies should be taken into consideration when dis-
secting the etiology of speech and language disorders.

Modifications of vocal tract morphology may have played roles in
the emergence of human speech (33). Unlike speech, mouse vocal-
izations are not learned, but acoustic analysis of USVs is a commonly
used tool for studying mice carrying mutations associated with
communication disorders. Recent work has revealed a novel mech-
anism of USV production, a planar impinging air jet within the larynx
(47). When epiglottis and thyroid cartilage in the larynx is damaged,
the production of USVs may be blocked to varying degrees. In the
present study, cartilage-specific ablation of Foxp2 silenced around
one-third of the knockout pups, which may correlate with their
dysmorphogenesis of the larynx (Fig. 2.4-D). Moreover, a substantial
reduction of USV syllable rates was observed in both Foxpl ™
and Foxp2¢,,*" knockout pups (Fig. 2F and SI Appendix, Fig. S4B).
However, the peak frequency, which is mostly regulated by laryn-
geal muscle motor and airflow pressure (48, 49), showed a signifi-
cant increase in the Foxpl ™", but not Foxp2c,»™* knockout
line. These findings also remind us to be cautious about using pup
USVs to try to model human speech impairments (50).

FOXP1 and FOXP?2 show partially overlapping expression patterns
in the brain, and heterozygous disruptions of these genes lead to a
distinct yet overlapping spectrum of neurodevelopmental disorders
(11). The phenotype associated with heterozygous FOXPI mutations
is more severe and extensive, including global developmental delay,
intellectual disability, autistic features and, notably, a number of
documented craniofacial symptoms (9, 51). Interestingly, neuron-
specific knockout of Foxpl in mice also impairs neonatal USVs
(52, 53). In the present study, cartilage-specific knockout of Foxpl in
mice led to impairment of cranial base formation and USVs, just as
with knockout of Foxp2. In addition, loss of Foxpl and Foxp2 dis-
played additive effects in skull shaping and bone formation (Fig. 3
and SI Appendix, Figs. S2 F and G and S9). Therefore, Foxpl and
Foxp2 cooperatively regulate craniofacial shaping.

Paleoanthropological evidence suggests that bipedalism
emerged at an early stage of hominid evolution following the
split from chimpanzee lineages (35). Two amino acid changes in
FOXP2 occurred on the lineage that led to modern humans,
after splitting from the chimpanzee but before the divergence of
Neandertals, and these changes have been considered as candi-
dates for involvement in the evolution of speech (24, 26). We still
know little about the genetic basis of bipedal gait, which is
thought to provide advantages in strength and walking economy
(35, 54). Given the coordination of osteogenesis and neuro-
genesis in shaping of the skull and brain (1), it is interesting to
speculate on whether Foxp2 may have been relevant for bipedal
evolution in early human history. Although we have not tested
evolutionary changes in the present study, our findings suggest
that Foxp2 may have been well placed to provide resources for
adaptations in bone and cartilage that are relevant for human
evolution. Firstly, Foxp2 helps regulate craniofacial shaping and
skull integrity (Fig. 3), such as sphenooccipital synchondrosis and
interparietal bone, which are major evolutionary sources of skull
reshaping (55). Secondly, Foxp2 helps to forge gracile but strong
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bones through its dual effects on bone remodeling (Figs. 44 and 5
A-D), improving walking economy and energy expenditure. Fi-
nally, Foxp2 sustains growth plate competency for elongation of
hind limbs and helps maintain the integrity of knee joint articular
cartilage and IVDs. All these features have the potential to pro-
tect bones from stress damage during bipedal striding. In sum-
mary, this study raises hypotheses about contributions of FOXP2
to human evolution that can be empirically tested through studies
of, for example, mice that have been humanized for this locus.

Materials and Methods

All animal experiments were performed according to the guidelines and
approved by the ethical committee of Bio-X Institutes of Shanghai Jiao Tong
University (SYXK 2011-0112). For skeletal morphological analysis, skeletal
preparations for mice of different ages were made by Alcian blue/Alizarin red
staining as previously reported. For uCT analysis, femurs were dissected from
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mice and fixed in 70% ethanol at 4 °C. pCT scanning of bones was performed
on SkyScan 1176. A 3D model was reconstructed and structural indices were
calculated using CTAn software, and the region of interest selected was
5 mm below growth plate of bones.

The details of other materials and methods can be found in S/ Appendix.
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